机器学习

Machine Learning

Instructor

唐杰 清华大学计算机与科学技术系 副教授

朱军 清华大学计算机系特别研究员

Course description

课程主要介绍高级机器学习的理论和相关算法;课程内容涵盖经典机器学习方法的回顾、概率图生成模型和概率图判别模型,以机器学习模型的理论分析和算法的应用验证为基础,重点讲述以下内容:(1)课程简介(Course Introduction);(2)基础知识回顾(Basic ML algorithms review);(3)支持向量机(Support Vector Machines);(4)概率话题模型(Probabilistic topic model);(5)马尔科夫随机场(Markov Random Fields);(6)非参贝叶斯模型(Non-Parametric Bayesian Learning);(7)深度学习(Deep Learning);(8)前沿讲座。课程要求设计并实现一个高级学习算法,并在验证平台上进行验证。

The course introduces the advanced theory of machine learning and its related algorithms. The course will first review the state-of-the-art machine learning algorithms and the course's content mainly consists of probabilistic generative learning and probabilistic discriminative learning. (1) Course Introduction; (2) Basic ML algorithms review; (3) Support Vector Machines; (4) Probabilistic topic model; (5) Markov Random Fields; (6) Non-Parametric Bayesian Learning; (7) Deep Learning; (8) Future trend.

Prerequisites

Week 7

Deep Learning; (6hr)

Probabilistics (e.g., likelihood, conditional probability, posterior probability, Bayes).

Weekly Schedule

weekly Schedule	
Time	Teaching focus
Week 1	Course Introduction; (3hr)
Week 2	Basic ML algorithms review; (6hr) Invited talk (3hr)
Week 3	Support Vector Machines; (6hr)
Week 4	Probabilistic topic model; (6hr) Invited talk (3hr)
Week 5	Markov Random Fields; (6hr)
Week 6	Non-Parametric Bayesian Learning; (6hr)

Time	Teaching focus

Week 8 Future trend. (3hr)

Reference textbook:

Christopher M. Bishop. Pattern Recognition and Machine Learning, Springer, 2007. • Daphne Koller and Nir Friedman. Probabilistic Graphical Models. MIT Press, 2009 • Michael I. Jordan. An Introduction to Probabilistic Graphical Models. University of California, Berkeley. June 30, 2003. • Trevor Hastie, Robert Tibshirani, Jerome Friedman. Elements of Statistical Learning. Springer, 2003.